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The Design Plan of a VLSI Single Chip (255, 223) 
Reed-Solomon Decoder 

I .  S. Hsu, H. M. Shao, and L. J. Deutsch 
Communications Svstems Research Section 

The VLSI architecture o f  a single chip (255,223) Reed-Solomon decoder for decoding 
both errors and erasures is described in this article. A decoding failure detection capabil- 
ity is also included in this system so that the decoder will recognize a failure to decode 
instead of introducing additional errors. This could happen whenever the received word 
contains too many errors and erasures for the code to correct. The number of transistors 
needed to implement this decoder is estimated at about 75,000 if the delay for received 
message is not included. This is in contrast to the older transform decoding algorithm 
which needs about 100,000 transistors. However, the transform decoder is simpler in 
architecture than the time decoder. It is therefore possible to implement a single chip 
(255, 223) Reed-Solomon decoder with today 5; VLSI technology. An implementation 
strategy for the decoder system is presented. This represents the first step in a plan to 
take advantage of advanced coding techniques to realize a 2.0-dB coding gain for future 
space missions. 

1. Introduction 
A concatenated coding system consisting of a convolutional 

inner code and a Reed-Solomon outer code has been adopted 
as a guideline for downlink telemetry for future space missions 
by CCSDS (Consultative Committee for Space Data Systems) 
(Ref. 1). The convolutional inner code is the same (7 ,1 /2)  
code used by NASA’s Voyager project. The outer Reed- 
Solomon code is a (255,223)  block code of 8-bit symbols and 
it is capable of correcting t errors and s erasures if 2 t  + s < 32.  
The performance of such schemes is investigated in Ref. 2 
where it is shown that this concatenated channel provides a 
coding gain of almost 2 dB over the convolutional-only channel 
at a decoded bit error rate of using only the error correct- 
ing capability of the codes. In Ref. 3 ,  a (255, 223) Reed- 

Solomon encoder using Berlekamp’s bit-serial multiplication 
algorithm is developed and proved to perform well. However, 
due t o  the sophisticated procedures involved in the Reed- 
Solomon decoding algorithm, especially the portion to  per- 
form the Euclid’s algorithm, it is much more difficult t o  
design a Reed-Solomon decoder in VLSI. 

Recently, Brent and Kung (Ref. 4) suggested a systolic 
array architecture t o  compute the greatest common divisor 
(GCD) of two polynomials. By the use of this idea, a VLSI 
design of a pipeline Reed-Solomon decoder was developed 
(Ref. 6). Hsu et al. used this idea to  implement a VLSI chip 
for calculating the GCD of two polynomials with 8-bit coef- 
ficients (Ref. 5). More recently, the pipeline design of  the 
Reed-Solomon decoder was revised in Ref. 5 .  In this revision 
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the transform decoding algorithm is replaced by a time domain 
algorithm (see Appendix B). Erasure correction capability is 
included in the revision, and a multiplexed design for the 
Euclid’s algorithm is used instead of the systolic array design. 
These improvements reduce the circuitry needed for VLSI 
implementation of Reed-Solomon decoder. 

In this article, the VLSI architecture of the (255,223) 
Reed-Solomon decoder for decoding both errors and erasures 
is described. The functional behavior of each block will be 
explained and the number of transistors needed for VLSI 
implementation is estimated. Finally, comparisons with the 
previous design are included as well. 

This article represents a first cut at a final implementation 
plan for a Reed-Solomon decoding subsystem that may be 
used to support future deep space missions withln the Deep 
Space Network (DSN). It also constitutes the first step toward 
the realization of a 2.0-dB coding gain through the use of 
advanced error correcting coding strategies. 

II. The Decoding Procedure 
Let N = 2 m  - 1 be the length of a ( N , I )  Reed-Solomon 

code over I Z F ( ~ ~ )  with design distance d. Suppose that r 
errors and s erasures occur, and s + 2 t  < d.  Then Reed-Solomon 
coding theory implies that the original codeword may be 
recovered from the received data. 

First some definitions are needed. Let each Xi be an error 
location or an erasure location, and define the two sets A = 
{X, lX,  is an erasure location}, and X = {XilX, is an error 
location}. Let 5 be the corresponding. errata magnitude and 
let r = (r,,, rl , . . . , rN-l ) be the received vector. Now the 
decoding process may be described in terms of the following 
basic steps. 

Step 1 : Compute the syndrome polynomial 

- 
S(Z) = c S k Z - k  

k= 1 

where 

N - l  

n =O 

The numbers Sk are called the “syndromes” of the received 
word. 

Step 2: Compute the erasure locator polynomial 

A(Z) = n (Z -4.) (2) 
XieA 

Step 3:  Multiply S(Z)  and A(Z)  to obtain the Forney syn- 
drome polynomial 

T(Z)  = S ( Z ) A ( Z )  (3) 

Step 4:  Compute the errata evaluator polynomial A ( Z )  and 
the error locator polynomial A(Z)  from 

by a modified Euclid’s algorithm 

Step5:  Multiply X(Z) and A(Z)  to get the errata locator 
polynomial 

P(Z)  = X(Z)A(Z)  (4) 

Step 6 :  Perform a Chien search on P(Z) to find the error 
location set X and the erasure location set A. 

Step 7: Compute the errata magnitudes 

by evaluating A ( Z )  and P ’ ( Z ) ,  the derivative of P(Z).  Use the 
sets A and X to direct the addition of Yk to the received vector 
r to produce the decoded result. 

The extra calculation required to recognize a failure to 
decode was left out of the above discussion for clarity. It is 
explained in Ref. 7. 

111. Functional Description and Transistor 
Estimations 

In this section, the decoder is broken down into several 
basic blocks. The function of each block is described, and the 
number of transistors needed for VLSI implementation is 
estimated. The discussion here will be more detailed than in 
Ref. 7. 

The estimates of the number of transistors required for the 
various blocks are based on the considerable work that has 
already been done on this project and the combined expertise 
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of a team of  logic and VLSI designers within the Digital Signal 
Processing Research Group. 

Figure 1 shows the overall architecture of the VLSI (255, 
223) Reed-Solomon decoder. The decoder is divided into 
twelve blocks as described below. 

(1) Syndrome Transform: This block calculates the syn- 
dromes from the received 255 symbol messages. The 
output of this block is the syndrome polynomial 
S(Z) (see Fig. 1). Figure 4 shows a more detailed 
diagram of the syndrome transform block. The archi- 
tecture of this block is similar to  that of the existing 
Reed-Solomon encoder chips (Ref. 3 )  since one of the 
multiplicands is fixed. Therefore the Berlekanip multi- 
plier is used here. This finite field multiplier design is 
simple and a large number of gates are saved as com- 
pared t o  other schemes (Ref. 8). The calculated syn- 
dromes are fed to  the Polynomial Expansion I block 
in parallel as the design of polynomial expansion cir- 
cuit needs t o  load the multiplicand polynomial all at 
once. A parallel to  serial conversion circuit is therefore 
saved. The number of transistors needed is about 

3 2 X  48 + 32X 16 + 32X 10 = 2 , 3 0 0  
Registers Multipliers XOR’s 

where we assume one symbol register contains 48 
transistors, 16 transistors are required in a basic cell 
of a dual basis multiplier, and there are 32 XOR’s with 
each XOR containing 10 transistors (Ref. 8). The pre- 
vious syndrome computation circuit (Ref. 6) needed 
about 

32 X 400 = 12.800 

transistors, since 32  syndromes are calculated and 
each syndrome cell contains 400 transistors. 

(2) Power CaZcuIation: This block converts the input era- 
sure data into a sequence of ak’s and 0’s. Since the 
maximum erasure decoding capability of this decoder 
is 3 2 ,  only 32  symbol latches are needed here. Figure 3 
shows a block diagram of the power calculation block. 
The multiplier used is a standard basis multiplier with a 
fixed multiplicand a. This is because output of this 
block must be in the standard basis and because the cir- 
cuitry for Berlekamp’s multiplier with the added dual- 
to-standard basis conversion is more complex than that 
simply using the slightly more complex standard basis 
multiplier only. A detection circuit for detecting the 
occurrence of erasures is included. If an erasure in the 
kith location occurs, its corresponding symbol aki is 

calculated and latched. A counter is used to  count the 
number of erasures. If this number exceeds 32,  a decod- 
ing failure alarm will result and the received message will 
be passed without decoding. The number of transis- 
tors needed in this block is about 

3 2 X  48 + 5 00 = 2,000 
Registers Power Calculation 

where we assume one symbol register contains 48 tran- 
sistors and 500 transistors are needed in the power cal- 
culation circuitry. 

(3) Polynoniial Expansion I :  This block performs polyno- 
mial multiplication of the syndrome polynomial S(2)  
and the erasure locator polynomial A(Z) t o  obtain the 
Forney syndrome polynomial (see Fig. 1).  Figure 5 
shows a detailed block diagram of the polynomial 
expansion block. In Fig. 5 ,  the multiplicand polyno- 
mial is entered in parallel while the multiplier polyno- 
mial comes in bit by bit. The output Forney syndrome 
polynomial is fed to  the modified Euclid’s algorithm 
stage serially as required in Ref. 5.  Therefore a parallel 
t o  serial conversion circuit is included. The number of 
transistors needed in this block is about 

32  X 350 = 11,200 

This is because the maximum degree of the Forney 
syndrome polynomial is 3 1 for this code. Therefore 32  
subcells for 32  coefficients are needed. We assume 350 
transistors are used in each subcell. 

(4) Delay I :  This block delays the erasure locator polyno- 
mial A(2) t o  synchronize it with the error locator poly- 
nomial A(Z) which comes out of the modified Euclid’s 
algorithm unit (see Fig. 1).  This block consists of a 
series of  shift registers. An external signal is used to  
control the latch operation, i.e., A(Z) is latched for a 
certain amount of time and then released to  the next 
stage when the error locator polynomial is ready. Fig- 
ure 6 presents the block diagram of this part. Since 
erasure locations come into the chip continuously, 
5-stage multiplexing (see Ref. 7) is anticipated in this 
design. The number of transistors needed is then about 

5 X 32 X 8 X 8 = 10,240 

where we assume five 32-symbol latches are needed. 
A symbol latch contains 8 bits and each bit has 8 
transistors. 

(5) Polynomial Expansion ZZ: This block performs the poly- 
nomial multiplication of erasure locator polynomial 
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A(Z) and error locator polynomial h(:Z) to obtain the 
errata polynomial P(Z).  The errata polynomial is fed to 
the next stages in parallel (see Fig. 1). This block is 
similar to Polynomial Expansion I except that the 
parallel to serial conversion circuit is not needed here. 
Figure 7 shows its block diagram. The number of tran- 
sistors needed is about 

32 X 300 = 9,600 

where we assume 300 transistors are contained in each 
subcell and there are 32 subcells. 

(6 )  Modified Euclid’s Algorithm: This block performs the 
modified Euclid’s algorithm. It was calculated in Ref. 7 
that only 5 GCD (greatest common divisor) subcells are 
needed instead of the 32 subcells required in Ref. 6 
(see also Appendix A). This is because a multiplexing 
method is used. Figure 8 shows the block diagram of a 
multiplexed GCD cell. Since each GCD subcell contains 
about 4000 transistors (Ref. 5 ) ,  this block contains 
about 5 X 4000 = 20,000 transistors. The outputs are 
the error locator polynomial X(Z) and the errata 
evaluator polynomial A ( Z )  (see Fig. 1). The error loca- 
tor polynomial is fed to the Polynomial Expansion I1 
in parallel, while the errata evaluator polynomial is fed 
to Polynomial Evaluation bit by bit. 

(7) Polynomial Evaluation i This block performs the evalua- 
tion of the errata evaluator polynomial A(Z).  Figure 9 
shows the block diagram of this circuit. The polyno- 
mial A ( Z )  is the input of this block; outputs are the 
evaluated values of the A(X,)’s. Because the architec- 
ture of this circuit is similar to that of syndrome 
calculation, the number of transistors needed in this 
block is about 

2,300 t 2,400 = 4,700 

where 2400 transistors are used for implementing the 
summation operation. The A(X,)’s are fed into the 
next stage serially. 

(8) Derivative, Evaluation, Multiplication, and Inverse 
(DEMI): This block takes the derivative of the polyno- 
mial P(Z), and performs the evaluation, multiplication 
by X,, and inverse of the final product. Figure 10 
shows its block diagram. The derivative of the polyno- 
mial P(Z)  is calculated by merely dropping the coeffi- 
cients of even terms since the field in which the opera- 
tions take place is of characteristic 2 (Ref. 7). Evalua- 
tion of the polynomial P’(Z)  is similar to the Polyno- 
mial Evaluation block except that there are only 16 

coefficients in P’(Z) - only half that in the Polyno- 
mial Evaluation block. Hence about 2,350 transistors 
are needed for this polynomial evaluation. In total, the 
number of transistors needed in this block is about 

2,350 t 2,500 = 4,850 

where we assume 2,500 transistors are needed for other 
parts. The output is fed to the next stage serially. 

(9) Chien Search: This block performs the Chien search 
algorithm for both the error and erasure locations. The 
outputs are the error and erasure locations. This circuit 
is similar to that of the Polynomial Evaluation block 
since the Chien search algorithm actually is a polyno- 
mial evaluation process (Ref. 10). Hence the number of 
transistors needed in this block is about 4,700. The 
estimated error and erasure locations are fed to the 
next stage serially. 

(10) Delay II:  This block is the delay for received messages 
which are used together with estimated errors and 
erasures to obtain the estimated infomation. Because 
the received messages are fed into the chip serially and 
continuously, a pipeline register array is needed. This 
means that the delay cannot be multiplexed in the 
same way as the GCD operation. The number of tran- 
sistors needed is about 

1,343 X 48 = 65,000 

where 1,343 symbol delays are estimated to be needed 
and one symbol delay contains about 48 transistors. This 
block occupies almost half of the area of the decoder. 

(11) Delay I l l :  This block is used to delay the A(X,>’s for 
synchronization with the output from the DEMI 
block. These two are sent to a multiplier to form the 
errata magnitude (see Fig. 1). It is estimated that 16 
symbol delays are required; hence the number of tran- 
sistors needed in this block is 

16 X 48 = 768 

where 48 transistors are needed in one symbol delay. 

(12) Decoding Failure Detection: This circuit performs the 
decoding failure detection. The algorithm for the 
decoding failure test will not be described here. A 
description of this algorithm may be found in Ref. 9. 
Suppose the Hamming weight of the errata vector com- 
puted by the decoder is w and that t errors and s era- 
sures have occurred. The decoder has erred if 2w > 
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d t s, where d is the design distance of this Reed- 
Solomon code, which is 33. It is estimated that this 
circuit contains about 1,500 transistors. 

The total number of transistors needed to  implement the 
(255, 223) Reed-Solomon decoder, if we exclude Delay 11, 
is about 

2,300 t 2,300 + 11,200 +- 10,240 + 9,600 

t 20,000 t 4,700 t 4,850 t 4,700 t 768 

t 1,500 = 72,000 

If overheads are included, the maximum number of tran- 
sistors should not exceed 75,000. However, if Delay I1 is 
included in the calculation, 75,000 t 65,000 = 140,000 tran- 
sistors are needed for this decoder. This would greatly reduce 
the probability of a single chip implementation using the fab- 
rication processes that are currently open to  JPL. However, 
the Delay I1 block, while being the largest single block in the 
design, is also the simplest and the most easily implemented 
with off-the-shelf technology. The whole block can be realized 
with a single medium density random access memory (RAM) 
chip. 

IV. Improvements Over the Previous Design 
Basically, the VLSI architecture of this new (255,223)  

Reed-Solomon decoder is similar t o  that in Ref. 7. Figure 2 
presents the VLSI architecture of the previous Reed-Solomon 
decoder. Several important improvements have been achieved 
which substantially increase the performance of the system. 
The improvements include the following: 

(1) The long delay line in the input stage for storing the 
erasure locations is now eliminated (see Fig. 1). This 
results from the fact that the Chien search procedure 
searches for both error and erasure locations while the 
previous design searches only for error locations 
(Ref. 7 ;  see Fig. 2). This design alleviates the neces- 
sity of storing erasure locations. About 1,200 symbol 
delays are reduced by this revision. When represented 
in terms of transistor numbers, it is approximately 

1,200X 8 X 6 = 57,600 

where we assume one symbol register contains 8 bits 
and each bit has 6 transistors. 

(2) Two polynomial multiplication blocks used in Ref. 7 
are replaced by two polynomial expansion circuits (see 

Fig. 1). By this revision, the polynomial expansion 
block in the input stage of erasure locations in Ref. 7 
is eliminated. This means a reduction of  about 12,800 
transistors. 

(3) The power calculation block (this block calculates 
powers of symbols according t o  erasure locations) 
which was not presented in Ref. 7 is refined here. 
Figure 3 shows its block diagram. The 255 symbol 
latches needed in the previous design are now reduced 
t o  32.  This is due t o  the fact that an erasure detection 
circuit is added to  detect the occurrence of erasures. 
If an erasure occurs, its location will be latched and 
moved one symbol forward if the next erasure occurs; 
otherwise it remains latched. Since the erasure correct- 
ing capability of this code is 32 ,  only 32 symbol 
latches are needed. If the number of erasures occurred 
is greater than 32 ,  a decoding failure alarm will be 
given. This saves 223 symbol latches, i.e., 223 X 48 = 
10,704 transistors since each symbol latch contains 
48 transistors. 

(4) Berlekamp’s multiplication algorithm (Ref. 8) is used 
in this decoder except in the power calculation block. 
It was discovered in Ref. 8 that the dual basis multi- 
plication algorithm is the simplest among all known 
finite field multipliers. Also, the conversion between 
dual basis and standard basis is not complicated. 
Therefore if basis conversion is not used too  often, the 
dual basis multiplier is the best choice. This is indeed 
the case in the Reed-Solomon decoder design. 

Although the normal basis multiplier was used in the GCD 
design (Ref. 5), the revision is simple. The only modification 
is t o  replace the normal basis multiplier by the dual basis 
multiplier. The remainder of the circuit will be left unchanged. 
By this revision, basis conversions from normal to  standard 
basis and dual basis are totally eliminated. 

Due t o  the simplicity of Berlekamp’s multiplication algo- 
rithm, the number of gates used in this design represents a sub- 
stantial reduction over the previous ones. It is estimated that a 
Berlekamp general purpose multiplier needs about 400 transis- 
tors, while the Massey-Omura general purpose multiplier needs 
about 500 transistors. Therefore, if the multipliers are used 
frequently, the savings in the number of transistors is tremen- 
dous. In blocks such as Syndrome Transform, Polynomial 
Evaluation, and Chien Search where one of the multiplicands 
is fixed, the advantage of using the dual basis multiplier is 
more predominant. 

Since there is only one multiplier in the power calculation 
circuit, the output must be in standard basis for compatibility 
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with next stage. For this reason, a standard basis multiplier is 
used in this block. 

V. Implementation Procedure 
The first step in the implementation of this decoder has 

already been accomplished. The various algorithms and archi- 
tectures have been tested through analysis, simulation, and, in 
many cases, actual VLSI implementation. The next step is to 
implement versions of the various blocks so as to develop a 
complete Reed-Solomon decoding system. We plan to build 
the blocks described above on several separate chips. This will 
enhance their testability. When they are fully tested, the next 
step will be to integrate these working chips into 4 subchips as 
categorized in the following: 

CHIP 1:  This chip contains Delay 11. The number of tran- 
sistors needed is about 65,000. This chip may very well end 
up being an off-the-shelf RAM chip. 

CHIP 2:  This chip contains Syndrome Transform, Power 
Calculation, Polynomial Expansion I ,  and Delay I .  The number 
of transistors is about 

2,300 t 2,900 + 9,600 t 10,240 = 24,000 

CHIP 3:  This chip performs the modified Euclid’s algorithm 
and contains about 20,000 transistors. 

CHIP 4 :  This chip contains the following circuits: Polyno- 
mial Expansion 11, Polynomial Evaluation, Chien Search, 
DEMI, Delay 111, and Decoding Failure Detection. The number 
of transistors needed is about 

9,600 t 4,400 + 4,400 t 4,700 + 768 + 1,500 = 25,400 

When all of the above four chips are proven to work together 
as a system, the final step will be to put the whole decoder on 
a single silicon chip. It will be the first single VLSI chip (255, 
223) Reed-Solomon decoder. 
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Fig. 1. Block diagram of the (255, 223) Reed-Solomon decoder for decoding both errors and erasures with decoding failure detection 
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Appendix A 

Comparison of the New Euclid’s Algorithm With the Old 

In this appendix, a comparison between the previous fully 
pipelined Reed-Solomon decoder design and the new multi- 
plexed Reed-Solomon decoder design as described in this 
article is exhibited. The previous pipeline design of GCD cells 
needs about 

32 X 4,000 t 160X 48 = 135,680 
GCD Subcells Delays 

transistors, since 32 GCD subcells and 160 symbol delays are 
needed in the modified Euclid’s algorithm block (Ref. 6). 

Figure A-1 shows the block diagram of the multiplexed modi- 
fied Euclid’s algorithm. For this new Euclid’s algorithm, the 
number of transistors needed is about 

5 X 4,000 t 5 X 32 X 8 X 8 = 30,240 
GCD Subcells Delays 

since only 5 stages of GCD subcells and five 32-symbol delays 
are needed. Apparently, the new multiplexed GCD design is 
much simpler than the previous pipelined GCD design. 

Fig. A-1. The block diagram of the multiplexed modified 
Euclid’s algorfthm 
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Appendix B 

Transistor Count for the Transform Design 

R EcE iv ED)  
MESSAGE 

In this appendix, the number of transistors needed for using 
the transform algorithm to design a Reed-Solomon decoder is 
estimated. It will show that the transform decoding algorithm 
uses more transistors than the new algorithm as described in 
this article. 

SYNDROME '(f) 3 POLYNOMIAL 2) 
ALGORITHM EVALUATION I TRANSFORM 

The VLSI architecture using transform methods to decode 
the Reed-Solomon code is quite different from that described 
in this article. Figure B-1 exhibits the VLSI architecture of 
such a Reed-Solomon decoder. Blocks such as Polynomial 
Evaluation, DEMI, Chien Search, and Delay 111 which are used 
in the present design are not needed. However, circuits for 
calculating Extended Syndrome from the coefficients of the 
combined error and erasure locator polynomial as well as syn- 
drome, and inverse transform of error patterns are included. 
Also, the syndrome delay is necessary in this design for the 
reason stated above. It is estimated that this delay needs 
6 stages of multiplexing. Hence the number of transistors 
needed for this part is about 6 X 32 X 8 X 8 = 12,300. 

~ 

INPUT 
ERASURE 

Since 32 cells are needed in the transformed error pattern 
calculation, and each cell needs about 400 transistors, 32 X 

EXTENDED 
SYNDROME 

- 
CA LCU LATl ON 

POLYNOMIAL 
A(z) -. EXPANSION II - DELAY I POWER 

CALCU LATl ON 
Acz) 

400 = 12,800 transistors are needed to implement this part. 
The architecture for the inverse transform of error patterns is 
similar to  that of calculating syndrome except that 255 cells 
are needed instead of 32. That is to say, the inverse transform 
circuit is approximately 8 times larger than the syndrome 
calculation circuit. Hence the number of transistors needed for 
the inverse transform is about 8 X 2,300 = 18,400. 

The total number of transistors needed for implementing 
the (255,223) Reed-Solomon decoder Wing the transform 
decoder algorithm is about 

2,300 + 2,300 + 9,600 + 10,240 

+ 20,000 + 1,500 + 9,600 + 12,300 

+ 12,800 + 18,400 = 98,440 

If overhead is included, the number should not exceed 10,000 
while the present design needs only 75,000 transistors. Note 
that the input message delay, Delay 11, is not counted in this 
estimation. 
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Fig. 6-1. The VLSI architecture of a Reed-Solomon decoder using the transform decoding algorithm 
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